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Part 4 : Algorithmics

• In the previous parts, we have discussed the sample complexity of learning.
VC-dimension and fat-shattering dimension were important concepts to
quantify it.

• In this part, we consider the time complexity of learning. To get a practical
value, an algorithm should be possible to produce a good output ‘quickly‘.



Part 4 : Algorithmics

Part 4 focuses on

• what is efficient learning (Chap. 22)

• the relation between efficient learning and optimization problem (Chap. 23)

• the time complexity of the Boolean Perceptron (Chap. 24)

• the hardness of the consistency problem with neural networks (Chap. 25)

• constructive learning algorithms iteratively adding basis functions to a
convex combination such as Construct and Adaboost (Chap. 26)
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22.1. Introduction

In this chapter, we see

• the definition of efficient learning.

• the role of VC-dimension on efficient learning for binary function class.

• the role of fat-shattering dimension on efficient learning for real function
class.

• the efficient learnability of binary classes in the restricted model.



22.2. Graded Function Classes

• The increasing speed of learning time w.r.t. the number of inputs, n, should
be considered, but a learning algorithm is defined on fixed n.

• Graded function classes
⋃∞

n=1 Fn, an union of function class Fn for input size
n, formalize the notion of ‘scaling’ w.r.t. the number of inputs.

• For instance, let Zn = Xn × {0, 1} and H =
⋃∞

n=1 Hn be a graded binary
function class. Then a learning algorithm for H is a mapping

L :
∞⋃
n=1

∞⋃
m=1

Zm
n →

∞⋃
n=1

Hn

such that if z ∈ Zm
n , then L(z) ∈ Hn, and for each n, L is a learning

algorithm for Hn.



22.3. Efficient Learning

Definition 22.1 Let F =
⋃∞

n=1 Fn be a graded class of functions and suppose
that L is a learning algorithm for F . We say that L is efficient if:

• the worst-case running time RL(m, n) of L on samples z ∈ Zm
n is polynomial

in m and n

• the sample complexity mL(n, ε, δ) of L on Fn is polynomial in n, 1/ε and
ln(1/δ).



22.3. Efficient Learning

• We separate the running time of the algorithm and the sample complexity,
which is standard or based on standard definitions: other definitions are
possible, but they are all, in a sense, equivalent (Haussler et al., 1991).

• Roughly speaking, if the sample size is doubled, an efficient learning
algorithm should give approximately squared confidence for fixed accuracy,
and approximately halved accuracy for fixed confidence.



22.4. General Classes of Efficient Learning Algorithms

Theorem 22.2 Let H =
⋃∞

n=1 Hn be a graded binary function class.

• If VCdim(Hn) is polynomial in n, then any SEM algorithm for H is a learning
algorithm with sample complexity mL(n, ε, δ) polynomial in n, 1/ε and
ln(1/δ).

• If there is an efficient learning algorithm for H, then VCdim(Hn) is
polynomial in n.

Proof

• By thm 4.2, for any SEM algorithm L for H,

mL(n, ε, δ) ≤ 64

ε2
(
2VCdim(Hn) ln

(12

ε

)
+ ln

(4

δ

)))
.

• By thm 5.2, for any learning algorithm L for H with 0 < ε, δ < 1/64,

mL(n, ε, δ) ≥ 1

320ε2
VCdim(Hn).



22.4. General Classes of Efficient Learning Algorithms

Theorem 22.3 Let F =
⋃∞

n=1 Fn be a graded real function class.

• If the fat-shattering dimension fatFn(α) is polynomial in n and 1/α, and L is
the learning algorithm based on any approximate SEM algorithm A (as in
Theorem 19.1), then L has sample complexity mL(n, ε, δ) polynomial in n,
1/ε and ln(1/δ).

• If there is an efficient learning algorithm for F , then fatFn(α) is polynomial in
n and 1/α.

Proof

• In thm 19.1, L(z) = A(z , ε0/6) where ε0 = 16√
m

satisfies

mL(n, ε, δ) ≤ 256

ε2
(
18fatFn(ε/256) ln2

(128

ε

)
+ ln

(16

δ

))
.

• By thm 19.5, for any learning algorithm L for Fn with B ≥ 2, 0 < ε < 1,
0 < δ < 1/100 and 0 < α < 1/4,

mL(ε, δ,B) ≥ fatFn(ε/α)− 1

16α
.



22.4. General Classes of Efficient Learning Algorithms

Definition 22.4 An efficient approximate-SEM algorithm for the graded real
function class F =

⋃∞
n=1 Fn is an algorithm that taked as input z ∈ Zm

n and
ε ∈ (0, 1) and, in time polynomial in m, n and 1/ε, produces an output
hypothesis f ∈ Fn such that

êr z(f ) < inf
g∈Fn

êr z(g) + ε.

An efficient SEM algorithm for the graded binary function class H =
⋃∞

n=1 Hn is
an algorithm that takes as input z ∈ Zm

n and, in time polynomial in m and n,
returns h ∈ Hn such that

êr z(h) = min
g∈Hn

êr z(g).



22.4. General Classes of Efficient Learning Algorithms

Theorem 22.5

• Suppose that H =
⋃∞

n=1 Hn is a graded binary function class and that
VCdim(Hn) is polynomial in n. Then, any efficient SEM algorithm for H is
an efficient learning algorithm for H.

• Suppose that F =
⋃∞

n=1 Fn is a graded real function class and that fatFn(α)
is polynomial in n and 1/α. Then any learning algorithm for F based on an
efficient approximate-SEM algorithm is efficient.

Proof

• By thm 22.2, any SEM algorithm for H is a learning algorithm with
mL(n, ε, δ) polynomial in n, 1/ε and ln(1/δ).

• By thm 22.3, mL(n, ε, δ) is polynomial in n, 1/ε and ln(1/δ). For any
efficient approximate-SEM algorithm A, the learning algorithm for F based
on A computes A(z, ε0) in the time polynomial in m, n and 1/εo . Here,
ε0 = 16/

√
m.



22.5. Efficient Learning in the Restricted Model

Definition 22.6 An algorithm L is an efficient consistent-hypothesis-finder for the
graded binary class H =

⋃∞
n=1 Hn if, given any training sample z of length m for

a target function in Hn, L halts in time polynomial in m and n and returns
h = L(z) ∈ Hn such that êr z(h) = 0.
Theorem 22.7 Suppose that H =

⋃∞
n=1 Hn is a binary graded function class and

that VCdim(Hn) is polynomial in n. Then any algorithm that is an efficient
consistent-hypothesis-finder for H is an efficient learning algorithm for H.
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23.1. Introduction

In this chapter, we see

• the definition of randomized algorithms.

• the relation between efficient learning and efficient randomized SEM
algorithm.

• the relation between efficient learning and optimization problem of finding a
hypothesis with small sample error.



23.2. Randomized Algorithms

Definition 2.1 Suppose that H is a class of functions that map from a set X to
{0, 1}. A learning algorithm L for H is a function

L :
∞⋃

m=1

Zm → H

from the set of all training samples to H, with the following property:

• given any ε, δ ∈ (0, 1),

there is an integer m0(ε, δ) such that if m ≥ m0(ε, δ) then,

• for any probability distribution P on Z = X × {0, 1},
if z is a training sample of length m, drawn randomly according to the product
probability distribution Pm, then for m ≥ m0(ε, δ),

Pm{erP(L(z)) < inf
g∈H

erP(g) + ε} ≥ 1− δ.

We say that H is learnable if there is a learning algorithm for H.



23.2. Randomized Algorithms

Definition 23.1 A randomized learning algorithm for the graded class
F =

⋃∞
n=1 Fn is a mapping

L : {0, 1}∗ ×
∞⋃
n=1

∞⋃
m=1

Zm
n →

∞⋃
n=1

Fn

such that if z ∈ Zm
n , then L(b, z) ∈ Fn, and:

• given any ε, δ ∈ (0, 1) and positive integer n,

there is an integer m0(n, ε, δ) such that if m ≥ m0(n, ε, δ) then

• for any probability distribution P on Zn,

if z is a training sample of length m, drawn randomly according to the product
probability distribution Pm, and b is a sequence of independent, uniformly chosen
bits, then for m ≥ m0(n, ε, δ),

EPm{erP(L(b, z)) < inf
g∈Fn

erP(g) + ε} ≥ 1− δ.

We say that F is learnable if there is a learning algorithm for F .



23.2. Randomized Algorithms

Definition 23.2 A randomized algorithm A is an efficient randomized SEM
algorithm for the graded binary function class H =

⋃∞
n=1 Hn if given any z ∈ Zm

n ,
A halts in time polynomial in n and m and outputs h ∈ Hn which, with
probability at leat 1/2, satisfies

êr z(h) = min
g∈Hn

êr z(g).

A randomized algorithm A is an efficient randomized approximate-SEM algorithm
for the graded real function class F =

⋃∞
n=1 Fn if the following holds: given any

z ∈ Zm
n , and any ε ∈ (0, 1), A halts in time polynomial in n, m and 1/ε and

outputs f ∈ Fn which, with probability at least 1/2, satisfies

êr z(f ) < inf
g∈Fn

êr z(g) + ε.



23.2. Randomized Algorithms

• Suppose we run a randomized approximate-SEM algorithm k times on a
fixed input, keeping the output hypothesis f (k) with minimal sample error
among all the k hypotheses returned.

• The probability that f (k) has error that is not within ε of the optimal is at
most (1/2)k . This enables us to handle the confidence of randomized
approximate-SEM by manipulating k .



23.2. Randomized Algorithms

Theorem 23.3

• Suppose that H =
⋃∞

n=1 Hn is a graded binary function class and that
VCdim(Hn) is polynomial in n. If there is an efficient randomized SEM
algorithm A for H, then there is an efficient learning algorithm for H that
uses A as a subroutine.

Proof

• By results from previous parts, w.p. at least 1− 4
∏

H(2m) exp(−ε2m/8),

erP(h) < optP(Hn) + 2ε

for all h achieving minimum sample error.
A randomized SEM algorithm with k iterations for z gives h(k) satisfying
w.p. at least 1− 1/2k ,

êr z(h(k)) = min
g∈Hn

êr z(g).

Now, choose k = max(m0(n, ε, δ),C log(1/δ)) where C is sufficiently large
constant and

m0(n, ε, δ) =
64

ε2
(
VCdim(Hn) ln(128/ε2) + ln(8/δ))

)
.



23.2. Randomized Algorithms

Theorem 23.3

• Suppose that F =
⋃∞

n=1 Fn is a graded real function class with fatFn(α)
polynomial in n and 1/α. If there is an efficient randomized approximate
SEM algorithm A for H, then there is an efficient learning algorithm for F
that uses A as a subroutine.



23.3. Learning as Randomized Optimization

• It is possible to construct efficient learning algorithm using efficient
approximate-SEM or SEM algorithm.

• The converse also true. i.e., the existence of efficient learning algorithm
implies the existence of efficient randomized SEM or approximate-SEM
algorithm.



23.3. Learning as Randomized Optimization

Theorem 23.4

• If there is an efficient learning algorithm for the graded binary class
H =

⋃∞
n=1 Hn, then there is an efficient randomized SEM algorithm.

• If there is an efficient learning algorithm for the graded real class
F =

⋃∞
n=1 Fn, then there is an efficient randomized approximate-SEM

algorithm.

Proof
It is sufficient to show that the second statement.
Resample (uniformly)z to z∗ of length m∗ = mL(n, ε, 1/2) and get output for z∗.
This randomized approximate-SEM algorithm gives f ∗ satisfying w.p. at least
1/2,

êrP(f ∗) < optP(F ) + ε/2.

Since erP(f ∗) = êrP(f ) and optP(F ) = infg infn erP(g) = infg infn êr z(g), it is an
efficient randomized approximate-SEM algorithm.



23.4. A Characterization of Efficient Learning

Theorem 23.5 Suppose that F =
⋃∞

n=1 Fn is a graded function class. Then F is
efficiently learnable if and only if fatFn(α) is polynomial in n and 1/α and there is
an efficient randomized approximate-SEM algorithm for F .
Theorem 23.6 Suppose that H =

⋃∞
n=1 Hn is a graded binary function class.

Then H is efficiently learnable if and only if VCdim(Hn) is polynomial in n and
there is an efficient randomized SEM algorithm for F .



23.5. The Hardness of Learning

• We have seen that H can be efficiently learned only if there is an efficient
randomized SEM algorithm for H.

• Checking the existence of such efficient randomized SEM algorithm may
difficult.

• It is enough to confirm that a certain decision problem associated with H is
NP-hard.



23.5. The Hardness of Learning

H-FIT
Instance: z ∈ (Rn × {0, 1})m and an integer k between 1 and m.
Question : Is there h ∈ Hn such that êr z(h) ≤ k/m?
H-CONSISTENCY
Instance: z ∈ (Rn × {0, 1})m.
Question : Is there h ∈ Hn such that êr z(h) = 0?



23.5. The Hardness of Learning

Theorem 23.7 Let H =
⋃∞

n=1 Hn be a graded binary function class. If there is an
efficient learning algorithm for H then there is a polynomial time randomized
algorithm for H-FIT; in other words, H-FIT is in RP.
Proof
Let A be an efficient randomized SEM algorithm for H. Calculating A(z) and
answering whether its sample error is less or equal than k/m is a polynomial-time
randomized algorithm.
This gives ‘no’ if true answer is ‘no‘, and ‘yes’ w.p. at least 1/2 if true answer is
‘yes’. This is the definition of solving decision problem with randomized algorithm
in polynomial time.



23.5. The Hardness of Learning

Theorem 23.8 Suppose RP 6= NP and that H is a graded class of binary
functions. If H-FIT is NP-hard then there is no efficient learning algorithm for H.
Corollary 23.9 Suppose RP 6= NP and that H is a graded class of binary
functions. If H-CONSISTENCY is NP-hard then there is no efficient learning
algorithm for H.



23.6.Remarks

Theorem 23.10 Suppose that H =
⋃∞

n=1 Hn is a graded binary function class.
Then H is efficiently learnable in the restricted model if and only if VCdim(Hn) is
polynomial in n and there is an efficient randomized consistent-hypothesis-finder
for H.
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